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On Computing Gauss-Kronrod Quadrature Formulae* 

By Franca Calio, Walter Gautschi, and Elena Marchetti 

Abstract. We discuss the use of Newton's method for computing Gauss-Kronrod quadrature 
formulae from modified moments. The underlying nonlinear maps are analyzed from the 
point of view of numerical condition. A method is indicated of computing the polynomial 
whose zeros are the Kronrod nodes. Examples include Gauss-Kronrod formulae for integrals 
with a logarithmic and algebraic singularity at one endpoint. Pertinent numerical results are 
tabulated in the supplements section at the end of this issue. 

1. Introduction. Given a positive measure da(t) on the real line, whose support 
contains infinitely many points and all of whose moments exist, we call 

n n+1 

Jf = 
t ,,J (T,,) + a a*f(r*) + Rn(f) 

P=1 I= 

a Gauss-Kronrod quadrature formula if T, = in) are the Gaussian nodes associated 
with da and the nodes i* and weights a., a* are chosen so as to maximize the 
degree of exactness of (1.1). Since there are 3n + 2 unknowns, we can achieve degree 
of exactness d = 3n + 1, i.e., Rn(f) = 0 whenever f = P3n+l It is well known, in 
fact, that the nodes i* must be the zeros of Tn*+I the (monic) polynomial of degree 
n + 1 satisfying the orthogonality property 

(1.2) J 7Tn*+ I(t) 7Tn(t)tidu(t) = 0, = 0,1,...,n, 

where n( ) = Tn(; do) is the nth degree orthogonal polynomial belonging to the 
measure do. Note that the measure do*(t) = 7Tn(t; da)du(t), with respect to which 
1T *+ is orthogonal, changes sign. We cannot expect, therefore, that rn*+, has all its 
zeros necessarily real. 

We are interested here only in Gauss-Kronrod formulae (1.1) with real nodes T*, 
all contained in [a, b]-the smallest interval containing the support of du-and 
with positive weights a*. Then the interlacing property holds (Monegato [17, 
Theorem 1]), 

(1.3) a < Tn*+ I < Tn < T* < Tn- < ... < T, < T* b. 

Our concern is with the actual computation of these nodes and the corresponding 
weights (provided they exist), given the integer n > 1 and the positive measure da. 
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Constructive methods for this problem have been considered before. For the 
Legendre measure do(t) = dt on [-1, 1], Kronrod [16] in his original work obtains 
7T"*+ 1in power form by solving (1.2). Patterson [22] expands r,*+1 in Legendre 
polynomials, while Piessens and Branders [23] use Chebyshev polynomials, the nodes 

* each time being computed by an appropriate rootfinding procedure. The weights 
can be obtained by interpolation. Monegato [17], [19], Baratella [1], and Dagnino 
and Fiorentino [3] use similar procedures to compute iTn*+ 1 for Gegenbauer measures 
and other classical measures. Kahaner et al. [13], in the case of the Laguerre 
measure, and assuming k > n + 1 Kronrod nodes ,* in (1.1), expand Ln7Tk in 
Laguerre polynomials Lj. All these methods require three distinct phases to obtain 
(1.1): The computation of the appropriate polynomial, say ITn*+ , finding the zeros of 
,Tn*+ 1 and computing the weights aq, a,,*. An entirely different approach is taken by 
Kautsky and Elhay [15] and Elhay and Kautsky [5], who compute the nodes r,* as 
eigenvalues of a certain matrix derived by matrix decomposition methods-an 
approach which extends the well-known method of Golub and Welsch [12] for 
ordinary Gaussian quadratures and its extension by Golub and Kautsky [11]. The 
weights are then obtained using general methods for constructing interpolatory 
quadrature rules [14], [6]. 

Here we propose to compute (1.1) directly by solving a set of nonlinear equations 
that express the exactness of (1.1) for a given set of 3n + 2 polynomials. These 
polynomials are chosen so as to generate a well-conditioned problem. The respective 
system of nonlinear equations is solved by Newton's method, careful attention being 
given to the choice of initial approximations and to monitoring the progress of the 
iteration. We make no claims for our method to be superior in any way to other 
methods, but merely demonstrate its feasibility and stability. It would indeed be 
interesting to undertake a detailed comparative study of the various methods now in 
use. 

While aiming directly at the unknown quantities is certainly a virtue if our method 
is successful, it is less than satisfactory otherwise, since no information about 1Tn*+ 1 is 
generated when the method fails. Nevertheless, if one wishes to examine the 
polynomial 7n*+ 1 one can express it in terms of the orthogonal polynomials 
{J 7k(-; d)} and obtain the coefficients by solving a triangular system of linear 
equations. 

The implementation of Newton's method for computing the Gauss-Kronrod rule 
(1.1) is discussed in Section 2. In Section 3 we study the condition of the underlying 
problem. Section 4 deals with the computation of the polynomial rn*+ . Examples 
will be given in Section 5, and numerical results for da(t) = t0 ln(l/t) dt on [0, 1], 
a = 0, + , are tabulated in the supplements section at the end of this issue. 

For additional questions related to Gauss-Kronrod quadrature we refer the reader 
to surveys by Monegato [20], [21]. 

2. The Computation of Gauss-Kronrod Rules by Newton's Method. The Gaussian 
nodes T,, for the measure do can be computed by well-known methods; see, e.g., [8, 
p. 290]. We assume therefore that they are available. For a given system of monic 
polynomials { Pk(-))I with degpk = k, k = 0,1,2,..., we further assume that the 
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first 3n + 2 modified moments of du, 

(2.1) mk = Pk(t) da(t), k = 0,1, . . ., 3n + 1, 

are known. The system of nonlinear equations defining the Gauss-Kronrod formula 
(1.1) then is 

n1 n+1 

(2.2) E avPk(Tr,) + E (a,*Pk(T,u) = mk k = 0,1, ..., 3n + 1. 
P=1 11=1 

We propose to solve this system for the 3n + 2 unknowns T*,, a, q* by Newton's 
method. A number of practical issues need to be addressed. 

First the choice of polynomials Pk- We assume that they satisfy a three-term 
recurrence relation, 

(2.3) p 1(t) = 0, pM(t) = 1, 

Pk+?(t) = (t - ak)Pk(t) - bkPk-l(t) k = 0,1, 2, . . ., 

with known coefficients ak' bk. This makes the evaluation of these polynomials, and 
of their derivatives, which is required in the computation of the left-hand side of the 
system (2.2) and its Jacobian, easy and straightforward. If, in addition, the poly- 
nomials { Pk } are orthogonal with respect to some given measure ds(t), then this 
computation is also numerically stable. If da is one of the classical measures, the 
simplest choice is Pk(-) = 7rk(-; do), the corresponding recursion coefficients ak = 

ak(da), bk = f8k(da) then being explicitly known; the modified moments become 

(2.4) mk = f k(t; da)da(t) = f3080k k = O, 1, 2, ..., 

where 80 = JR da(t) and 80, k is the Kronecker delta, 80,0 = 1, 80,k = O if k > O. 
For nonclassical measures du, the choice of Pk is usually dictated by the necessity of 
being able to compute the modified moments (2.1). 

The next important issue is the computation of the initial approximations for the 
Kronrod nodes i * and for the weights q, a,*. Since we are interested only in 
Gauss-Kronrod formulae with nodes in [a, b] and with positive weights a*, we can 
assume the interlacing property (1.3). This suggests as initial approximations t*, 
2 < IL < n, the midpoints 

(2.5) +,* = 2 ( q; -1 + 0;9 ) u = 2, 3 , . .. , n , 

between the Gaussian nodes T- 1and - . The choice of the initial approximations +* 

and ,,*+I is less obvious. If the endpoint b is finite, we select a number of trial values 
T* equally spaced between T1 and b. If a is also finite, we do the same for tn*+ in 
the interval (a,Ti,) and let both +n*+* and +* move inward simultaneously, or, if 
necessary, let them move independently from one another. If an endpoint, say b, is 
infinite, we select +* = T1 + (T1 - T2), or try a number of values +* equally spaced 

between T- and, say, T- + 2(Tj - T2). For each set of initial approximations +14* we 
compute corresponding approximations 6,, 6* to the weights by solving the first 
2n + 1 equations in (2.2), where ,* is replaced by + *. Since the matrix of this 
system forms part of the Jacobian matrix used in the first Newton step, the only 
overhead of this computation is the solution of the linear system. 
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Each Newton step is monitored as to the location of the iterates of r* If at any 
stage one of these iterates falls outside the interval [a, b] (if either a or b is finite), 
the iteration is terminated and restarted with a new set of initial approximations. 
The same action is taken if the number of Newton iterates exceeds a preset limit. If 
none of the initial approximations leads to a convergent process, the attempt of 
computing (1.1) is declared a failure. This is usually an indication (not a proof!) that 
the desired Gauss-Kronrod rule does not exist. 

If do(t) = du(-t) is an even measure and the support of do is symmetric with 
respect to the origin, then both the Gaussian nodes T, and the Kronrod nodes T * are 
located symmetrically with respect to the origin, and weights corresponding to 
symmetric nodes are equal. As a result, (2.2) is trivially true if pk(t) is an odd 
polynomial. If we choose for { Pk } a system of polynomials satisfying 

(2.6) Pk(_t) = (-1) kpk(t), k = 0,1,2, ... . 

the system (2.2), therefore, is equivalent to the system 
n/2 n/2 1 m 

E avP2k(-rP) + E ap( Ty) + 2a(*n/2)+1P2k(O) m2k' 

(2.7e) v=i1t= 

k= 0,1,...,3n/2, 

if n is even, and to the system 
[n/2] +1 [n/2]?l 1 

E (5P2k(Tv) + 2 [n/2]+1P2k(O) + E J,*P2k(, )t 2M2k5 
(2.7o) v=1 

2 2 

k = 0,1, ..., (3n + 1)/2, 

if n is odd. This in effect reduces the size of the problem by a factor of 2. 

3. The Condition of the Underlying Problem. Let mT = [M0, m1, . . ., m3n+I] be the 
vector of modified moments, and yT = [a1 ..., a'g a, - . ,A*A . .. 5Tn*+i] the 
vector of the weights and Kronrod nodes of the Gauss-Kronrod formula (1.1). The 
procedure of Section 2 is an attempt of carrying out the nonlinear map 

G n: 3n + 2 ,-) R3n+2 m -- Y 

where the Gauss-Kronrod formula is assumed to have real nodes. We now wish to 
examine the sensitivity of the map Gn to perturbations in the modified moments. 
The development parallels the treatments given for Gaussian formulae in Gautschi 
[8], [9]; see also Gautschi [10, Section 5]. 

We assume that the polynomials { Pk } defining the modified moments are 
orthogonal on the real line with respect to some measure ds. The support of this 
measure normally coincides with the support of da, but does not have to. We define 
normalized modified moments by 

(3.1) rk = d/ in d, = J p2(t) ds(t), 

and consider, in place of G, the map 

(3.n: R3n+2 nn+2 - (3.2) M ) - 

where ,hT = [fi0, m1, ... . r33+1]. We analyze the sensitivity of Gn by computing the 
Frobenius norm of the Jacobian matrix, Jc, of the map G". 



GAUSS-KRONROD QUADRATURE FORMULAE 643 

The basic equations can be written in the form 

(3.3) D (y) =m, 

where 

n n+1 

(3.4) (k(Y) = dk7E 1{ vPk(vr) + 1 Pk(T )} 
k = 0,1,2,...,3n + 1. 

Since the map G, amounts to solving (3.3) for y, the Jacobian of Gn is the inverse of 
the Jacobian H4/ay of (D, 

(3.5) Jtn = (aD/ay)yl. 

An elementary computation shows that 

(3.6) aD/ay =D-'P*, 

where D = diag(do, dl,...,d3"+1), * = diag(l,..., 1,1,.* . 1, *a*+,) and 

(3.7) 
Po (T ... Po ( Tn ) Po (T* ... Po ( Tn*+ I) P0, ( T* .. P'o ( Tn*+ 1 

p = pi(Ti) ...p() P.(.) P4(*+) Pl(1)j* ) ... p ( ) 
... ... . . ... . ... ... . . ... . ... ... ... 

P3. +1 (T ).. P3n +1 (T,) P3n+1(Tl1 ) ..P3 n+ I( Tn*+1 )P3n+I(T, ) ..P 3 n + (Tn*+ I 

Therefore, 

(3.8) J = ( n *y1p 

For the inversion of P, define g^, h,1, k, to be the elementary Hermite interpola- 
tion polynomials of degree 3n + 1, belonging to the nodes T, and T*, defined by 

gv(Tx) = 1VA, X = 1, 2, ... ., n 

9" ((tL 
, 

*) = , IV( ,* ) 
= O, , u=1,2, .... ,n + 1 

v= 1,2,...,nn, 

htjTX,) = , X = 1, 2, ......... ,n 

(3.9) 
htj T1(T* ) = tL, h'(T,*) = O, v = 1,2, ... ,n +1t 
k,(TX) 0, X =1, 2, ........ ,n ( 

kt(T*) 0, k'(T*) =t v=1,2,.. n1 

p=1,2,...,n + 1. 
Writing 

3n+2 3n+2 3n+2 

gv,(t)= E a,Ppp,_(t), h,,(t)= , bAppp-l(t), k,t(t)= E c,,pP_ (t), 
p=l p=1 p=1 

it is easily seen that 

A 
(3.10) P-1= B ,A = [ag,p], B = [b'p], C= cl] 
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By a computation similar to the one in [8, pp. 303-304] one finds from (3.8) and 
(3.10) that the Frobenius norm of J, is given by 

/ r~~~~~~~~~~~~ ~~1/2 

(3.11) IIJ F FL E g{(t) + h 2(t) + 12k2(t)) ds(t)} 

Its magnitude, therefore, is critically influenced by the magnitude of the polynomial 
n n+1 / 1 

(3.12) fn(t) = E g2(t) + 2 
hy(t) + '2K(t) 

v=l 1 

on the support of ds. The degree of fn is 6n + 2. The integral in (3.11) can therefore 
be computed exactly (up to rounding errors) by a (3n + 2)-point Gaussian quadra- 
ture rule belonging to the measure ds. 

Explicit forms of the polynomials g^, h , k,L can easily be given in terms of the 
fundamental Lagrange polynomials 

n n?1 * 

A-1 TX 2 1 (t) rlg r X_ IT* - * 

X* v It 

belonging to the nodes T. and -r,7 respectively. One obtains 

rTn* =(t) 12 

(3.13) h,,(t) = ~ngr(t ) [=,, (t)]2(*1 -(t - *)[ ? ) + 2 
. 

T.*n 

k,,(t) = ~(t) [l,I(t)]2 (tT-,*), /1= 1,2,...,n + 1, 

where qT(- = 'rrn(.; da) and qTI*?1(t) = Hni!i(t -A r,)- We also note the following 
properties Of fn, which follow directly from (3.9) and (3.12), 

(3.14) fn(r) 1 f'(r) 2g(r), v = IL . . 

rn(y)1 f'(r*) = 0 U = 1,2,...,n + 1 . 

These conditions, of course, are not sufficient to determine the polynomial fn. There 
are 2n + 1 degrees of freedom left, which allow f,n considerable room for movement. 

4. Computation of the Polynomial fT* Expressing the polynomial fTn? in terms 
of the orthogonal polynomials Tk( *) = Trk( *; da(J), 

(4.1) qTn+l(t) = q1Tn(t) + c[g7t7(t) + cgT7_q(t) + * *. 

conditions 
JR [n~?1(t) + Ck'Tn( 

314 fTn+(Tp) 1+ E fn-(Tp) 
= 

2g(t)Tp()g(J( = 19 29 .. n,1.,n 

fn k =O* 19f t* 0 L= 929 n+ 
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hence the linear system 

n 

(4.2) E, aikCk = bi, i = 0, 1, ... ., n, 
k=O 

for the coefficients Ck, where 

a= f X(t)iln-k(t)7n(t) da(t), i, k = 0,1,... ., n, 

(4.3)R 
bi= -| f'(t)Tn+ 1(t)7n (t) da(t) i = 0,1,..., n. 

By orthogonality, aik = 0 if i < k, so that the matrix A = [aik] is lower triangular, 
and a1i = JR gn2(t) do(t) > 0, so that A is nonsingular. The solution of (4.2), 
therefore, can be effected by forward substitution. 

The coefficients aik and bi = -a -1 satisfy a two-dimensional recursion relation, 
which could be used for their computation (see [2]). Noting, however, that the 
integrands in (4.3) are polynomials of degree at most equal to 3n + 1, we can also 
use m-point Gauss-Christoffel quadrature relative to the measure da, with m = 

[(3n + 3)/2], to compute aik and bi. This might be preferable, since it requires 
nothing beyond standard software. 

While this procedure of generating ?n*+ is similar to Kronrod's original method, 
it is significantly more stable, since the use of powers as a polynomial basis is 
completely avoided. 

5. Examples. It is known that for da(t) = (1 - t2)X-1/2dt on [-1,11 all Gauss- 
Kronrod formulae exist if 0 < X < 2. Furthermore, the interlacing property (1.3) 
holds and a,* > 0 for u = 1, 2, .. ., n + 1 (Monegato [171). If 0 < A < 1, one has in 
addition a > 0 for v = 1, 2,..., n (Monegato [18]). Our first example deals with the 
case X = 2, i.e., with the Legendre measure. All computations reported were done 
on the CDC 6500 computer in single precision (machine precision = 3.55 x 10-15), 
unless noted otherwise. 

Example 5.1. do(t) = dt on [-1,1]. 
Taking advantage of symmetry, we apply Newton's method to the system (2.7), 

using for P2k the (monic) Legendre polynomials of degree 2k. The required modified 
moments are then given by (2.4). We had no difficulty with convergence. By 
symmetry, only one " trial" initial approximation, T*, is needed, which was pro- 
grammed to move in nine equal steps of length h = (1- 1)/10 from 1 - h to 
T + h. Convergence was invariably achieved for the first choice of T'*. Moreover, 
the problem, suitably scaled, turns out to be extremely stable. In the first four 
columns of Table 5.1 we report on the number of iterations required for 12 decimal 
place accuracy, the maximum of fn(t) (cf. Eq. (3.12)) on [-1,1] and the value of 
IJ(G IIF (cf. Eq. (3.11)) for n = 5, 10, 20, 40, 80. The maximum of fn(t)-an even 
function of t-is typically assumed between T2 and T2* if n is even, there being a 
couple of smaller maxima on either side of it. If n is odd, the maximum seems to 
occur at t = 1. Through most of the interval (-1,1), however, fn remains < 1. 



646 FRANCA CALIO, WALTER GAUTSCHI, AND ELENA MARCHErrI 

TABLE 5.1 

Performance and stability characteristics of Newton 's method for generating the 
(2n + 1)-point Gauss-Kronrodformula with do(t) = dt on [-1,1]. 

cond, cond2 
ii #iter. t11,1K IIJc,,IIF cond1 cond2 (scaled) (scaled) 

5 6 1.126 1.293 1.4(3) 3.3(4) 1.2(1) 1.4(1) 
10 6 2.456 1.397 1.5(6) 5.2(8) 1.8(1) 2.3(1) 
20 6 2.520 1.333 1.5(12) 5.3(17) 4.1(1) 4.8(1) 
40 6 2.535 1.310 1.6(24) 5.8(35) 6.6(1) 7.7(1) 
80 6 2.540 1.302 - - 1.3(2) 1.7(2) 

The linear systems of equations for determining the initial approximations &,,, &,* 
for the weights, as well as the Jacobian matrices in Newton's method, appear to 
become rapidly ill-conditioned as n increases. Typical condition number estimates 
(furnished by the LINPACK routine SGECO; cf. [4, Chapter 1]) for the former are 
shown in the fifth column of Table 5.1, while those for the latter are shown in the 
sixth column. (Numbers in parentheses indicate decimal exponents.) In spite of the 
large condition numbers, numerical difficulties were not observed, except in the case 
n = 80, when the computation was aborted due to an arithmetic error. We believe 
that the apparent ill-conditioning is caused by the use of monic polynomials P2k in 
(2.7); their L2-norm goes to zero rather quickly, 

11 P2k 112 
= (4k )! 2k+1 ~ 2-2k as k -*, 

thereby introducing a systematic diminution of the rows down the matrices. If the 
row involving P2k is scaled by dividing it by 22k(2k)!2/(4k)!, the condition numbers 
indeed become much more reasonable (the solutions remaining the same); they are 
shown in the last two columns of Table 5.1. 

Example 5.2. do(t) = ln(1/t) dt on [0,1]. 
It appears that this measure also admits Gauss-Kronrod formulae for all n, 

satisfying the interlacing property (1.3) and having all weights positive. A summary 
of our numerical experience with Newton's method is given in Table 5.2; it contains 
information analogous to the one given in Table 5.1 for Example 5.1. 

TABLE 5.2 

Newton 's methodfor Gauss-Kronrodformulae with da(t) = ln(1/t) dt on [0, 1]. 

cond, cond2 
ii #iter. Ift, KlX II]G,IIlF cond1 cond2 (scaled) (scaled) 

5 6 2.90(4) 12.14 2.0(6) 6.9(9) 5.8(1) 2.7(3) 
10 6 4.09(5) 24.35 2.2(12) 7.5(18) 2.8(1) 1.6(4) 
20 6 5.77(6) 47.43 2.4(24) 8.2(36) 9.8(2) 1.0(5) 
40 6 8.86(7) 94.59 - _ 3.8(3) 6.4(5) 
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We have used modified moments with respect to the (monic) shifted Legendre 
polynomials, pk(t) - [k!2/(2k)!]P, (t); they are known to be (cf., e.g., Gautschi 
[7]) 

in0 = 1, mk -~~~~ k!2 (-I)k k12 MO M 1 mk = Pk (t)ln(l/t) dt =(2k)! k(k + 1)9 k = 192,.... 

Row scaling of the matrices was performed through division by k!2/(2k)! (of the 
row numbered k + 1). 

The initial approximations 1* and -n 1 were programmed to first move inward 
symmetrically in nine steps of length h = (1 - T1)/1O and h' = T-/10, respectively, 
and if this did not work, Ti was varied independently over the same set of points for 
each fixed -n* 1 Convergence, in general, was achieved for the very first choice of T* 
and -n*, i.e., for-1 = 1 - h and n = h', except when n is small, for example, 
n = 1 and n = 3, in which cases convergence was realized when ?n*+ = h' and 
0* = 1-4h (for n = 1 - 2h (for n = 3). 

The polynomial fn(t) invariably assumes its global maximum at t = 1, has a few 
much smaller relative maxima between the first few neighboring nodes T* and Tr,, 
and then settles down to magnitudes around 1 for the remaining portion of the 
interval [0,1]. The condition of the problem, though slightly worse than in Example 
5.1, is still remarkably good. 

Numerical results for the nodes and weights of the (2n + 1)-point Gauss-Kronrod 
formula for n = 5(5)25 can be found in Table S.1 of the supplements section at the 
end of this issue. They have been computed in double precision to an accuracy of 25 
decimal places after the decimal point. As the results are displayed in D-format, 
some of the end figures may not be reliable in those numbers that are much smaller 
than 1. 

We used Example 5.2 to further experiment with alternative choices of initial 
approximations. In particular, we examined how inaccuracies in individual initial 
approximations affect the speed of convergence. To obtain a basis for meaningful 
comparison, we first obtained "reference" values for the number of iterations 
required when all initial approximations are at the same level of accuracy. This was 
achieved by imposing on the "exact" results for a, at, T.* (computed to 12 decimal 
digits) a random perturbation at level e, i.e., by taking & = uJ(I + r,e), &,* = 

a,*(I + r,L*e), ,* = T,*(1 + s,*e), where r, r,L*, s, are random numbers from [-1, 1]. 
The results for e = 10-2, 10-5, 10-8, and 10-11 are shown in Table 5.3. (For 
e = 10-2 and n = 40, Newton's method did not converge within 20 iterations.) 

TABLE 5.3 
The number of iterations required for initial approximations at accuracy level e. 

E n = 5 n = 10 n = 20 n =40 

10-2 6 6 5 
lo-, 3 3 3 4 
lo-, 2 2 2 2 
_l11 2 2 2 2 
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TABLE 5.4 

The number of iterations required when two pairs of initial approximations 

(with indices ,u and n + 2- ) are inaccurate. 

? fL = I fL - n14L = n2n/4 

n = 5 n = 10 n = 20 n = 40 n = 5 n = 10 n = 20 n = 40 n = 5 n= 10 n = 20 n = 40 

io-2 5 4 6 6 5 4 6 5 4 4 5 6 

10-5 3 3 3 4 3 3 3 3 3 3 3 3 
1l-8 2 2 2 2 2 2 2 2 2 2 2 2 

101 2 2 2 2 2 2 2 2 2 2 2 2 

We now contrast this with the case in which all initial approximations are at the 
accuracy level 410-12 of the initially computed results, except for two pairs of 
Kronrod nodes and weights (situated symmetrically with respect to the midpoint of 
the interval [0,1]), which are randomly perturbed at level e. Choosing the inaccurate 
pairs +*, 6* to be those corresponding to i = 1, i = n/4, and y = n/2 (and to the 
symmetric indices n + 2 - ,u), we observed the results shown in Table 5.4. 

Comparing Tables 5.3 and 5.4, we note some improvement, particularly for 
i = n/2, in the case e = 10-2, when only two pairs of initial approximations are 
inaccurate (though for n = 20 there are two instances of deterioration), but in all 
other cases the performance of Newton's iteration is practically the same. This seems 
to suggest that it is the maximum relative error in the initial approximations (usually 
associated with a Kronrod or Gauss node near the end of the interval) which 
determines the speed of convergence. 

The choice of initial approximations proposed in Section 2 leads to initial 
(relative) errors that are reasonably small for "interior" nodes, but comparatively 
larger near the "boundary". Specifically, if we regard the three Kronrod nodes 
nearest to each of the endpoints of [0,1], and the two Gauss nodes between them, as 
belonging to the "boundary", and all others to the "interior", then the relative 
errors of the initial approximations in our scheme range for n = 10, 20, 40 
respectively from 2.0(-3) to 9.5(-2), 2.4(-5) to 5.5(-2), and 4.3(-6) to 2.9(-2) in the 
interior, and from 4.3(-3) to 5.4(-1), 1.3(-3) to 5.6(-1), and 3.3(-4) to 5.7(-1), 
respectively, at the boundary. The relatively large number of 6 iterations reported in 
Table 5.2 appears to be due to the large maximum error of the initial approxima- 
tions in the boundary zones. 

Attempts to improve the initial approximations for a, by using, for example, 

2, = j$^ ),** where ,(n) are the Christoffel numbers for da, and by obtaining the 
remaining initial approximations a,* from a reduced system (2.2) of n + 1 linear 
equations, do not speed up Newton's iteration (in fact, require 7 iterations, instead 
of 6, when n = 5 and n = 10), precisely because of the initial approximations in the 
boundary zones remaining at the same low accuracy level. 

Example 5.3. do(t) = ta ln(1/t) dt on [0, 1], ax = + 2. 

Modified moments with respect to the shifted Legendre polynomials are again 
available (Gautschi [7]) and suggest the same scaling as in Example 5.2. Results for 

** This approximation was proposed to us by the referee. 
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TABLE 5.5 

Newton 's methodfor Gauss-Kronrodformulae with da(t) = tl/2 ln(l/t) dt on [0, 1]. 

n ~ iter. lif" II. II (%1IF 
cond1 cond 2 

(scaled) (scaled) 

5 6 1.03(4) 7.542 3.8(3) 7.8(4) 
10 6 1.35(5) 14.64 7.3(4) 1.0(6) 
20 6 2.06(6) 29.60 5.2(5) 1.4(7) 
40 6 3.40(7) 61.04 1.4(7) 3.0(8) 

TABLE 5.6 

Newton 's method for Gauss-Kronrod formulae with do ( t) = t -1/2 ln(l/t) dt on [0, 1]. 

n ~ iter. ILL % I1 F 
cond, cond2 

(scaled) (scaled) 

4 7 9.78(6) 272.21 1.3(2) 9.0(5) 
8 9 3.66(8) 889.01 2.0(3) 1.3(7) 
16 9 1.52(10) 2961.5 6.3(3) 2.0(8) 
32 - 6.56(11) 9907.2 8.8(3) 3.1(9) 

CX-2 are summarized in Table 5.5. (The computation was done in double precision, 
the number of iterations referring again to 12 decimal place accuracy.) The perfor- 
mance of Newton's method is similar as in Example 5.2, except for the (scaled) 
matrices now being more ill-conditioned. The ill-conditioning of the Jacobian 
matrices is still worse in the case a = - 

2, 
as can be seen from Table 5.6. For this 

value of a the independent variation of the starting approximations T1, n+ 1 proved 
to be rather essential, since convergence was never achieved for the first choices of 
these starting values. This is in contrast to the case ax = 2 where the first choice of 
T and +n*+1 always worked. 

When a = - 
2, 

Newton's method could not be made to converge for n = 32, 
using the implementation described in Section 2. The difficulty, we believe, is caused 
by the smallest Kronrod node being almost equal to zero. Computing (in double 
precision) -33 by the procedure of Section 4, and applying Newton's method to r3*3, 

we find iT33 = 3.05867... xIO-9. Using all zeros of r3*3 computed in this way as 
initial approximations to Newton's method, and lowering the accuracy requirement 
to 20 decimal places, indeed restores convergence and yields the data for n = 32 in 
Table 5.6 after 1 iteration., 

Nonconvergence (in the case a = - 2) was also observed for odd values of n, this 
time because of the presence of negative Kronrod nodes. When n = 1, for example, 
one computes directly ff2*(t)= t2 (198/343)t - (3671/117649), which has the 
zeros T= .627023... and 2 =-.0497636.... We verified that for all odd 
n < 32 the polynomial rn*+1 has exactly one negative zero, while all other zeros are 
between 0 and 1. 

Numerical results for a = 2 n = 5(5)25, computed in double precision, are given 
in Table S.2 and for a = - 2 n = 4(4)24, in Table S.3 of the supplements section 
at the end of this issue. 
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